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Shock formations are observed in granular avalanches when supercritical flow
merges into a region of subcritical flow. In this paper we employ a shock-capturing
numerical scheme for the one-dimensional Savage—Hutter theory of granular flow
to describe this phenomenon. A Lagrangian moving mesh scheme applied to the
nonconservative form of the equations reproduces smooth solutions of these free
boundary problems very well, but fails when shocks are formed. A nonoscillatory
central (NOC) difference scheme with TVD limiter or WENO cell reconstruction for
the conservative equations is therefore introduced. For the avalanche free boundary
problems it must be combined with a front-tracking method, developed here, to prop-
erly describe the margin evolution. It is found that this NOC scheme combined with
the front-tracking module reproduces both the shock wave and the smooth solution
accurately. A piecewise quadratic WENO reconstruction improves the smoothness
of the solution near local extrema. The schemes are checked against exact solutions
for (1) an upward moving shock wave, (2) the motion of a parabolic cap down an
inclined plane, and (3) the motion of a parabolic cap down a curved slope end-
ing in a flat run-out region, where a shock is formed as the avalanche comes to a
halt.  © 2002 Elsevier Science

Key Words:granular avalanche; shock-capturing; nonoscillatory central scheme;
free moving boundary; front-tracking.

1. INTRODUCTION

Snow avalanches, landslides, rock falls, and debris flows are extremely dangerous an
structive natural phenomena, and their occurrence has increased during the past few dec
Their human impact has become so significant that the United Nations declared 1990-
the International Decade for Natural Disaster Reduction. Research on the protectio
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habitants from floods, debris flows, and avalanches is under way worldwide, and mi:
institutions focus on the numerical prediction of such flows under ideal as well as realis
conditions.

One of the models that has become popular in recent years is the Savage—Hutter |
avalanche theory for granular materials [33, 34]. In the past decade numerical technic
were developed to solve the SH-governing differential equations for typical moving bour
ary value problems [6-10, 13, 14, 16, 19, 33, 34, 41]. These techniques are based
Lagrangian moving mesh finite-difference scheme in which the granular material is divic
into quadrilateral cells (2D) or triangular prisms with flat tops (3D). Exact similarity solu
tions of the SH equations were constructed in spatially one-dimensional chute flows |
33, 35] and for two-dimensional unconfined flows [12, 15]. In the case of chute flows it w
shown that the solutions obtained by the Lagrangian integration procedure approximate
exact parabolic similarity solution very accurately, and these theoretical and numerical
sults are in good agreement with experimental avalanche data. Similar agreement bet
theoretical, numerical, and experimental data was also obtained for the two-dimensic
flow configurations (cf. above references). In these Lagrangian schemes explicit, artifi
numerical diffusion was incorporated to maintain stability. In doing so the quality of res
lution deteriorates. In fact, the adequacy of these numerical solutions can be challer
because of uncontrolled spreading due to this diffusion. It was also observed that
Lagrangian schemes lose their stability (or else unjustified artificial diffusion must be ¢
plied) whenever internal shocks are formed. This appears to occur whenever the avala
moves from an extending to a contracting flow configuration. These shocks are travell
waves which form bumps with steep gradients on the free surface, which is thicker
the downslope side. It is therefore natural to develop conservative, high-resolution, shc
capturing numerical technigues that are able to resolve the steep surface gradients
identify the shocks often observed in experiments but not captured by the Lagrangian fi
difference scheme.

The development of high-resolution shock-capturing schemes has a long history wt
we cannot even sketch here (see, e.g., the classical references [3, 11, 40, 42] or the r
textbooks [4, 20, 25, 39]. The most common approach is to first develop a one-dimensio
total-variation-diminishing (TVD) upwind scheme for a scalar conservation law and th
apply it to systems using one-dimensional characteristic decompositions or approxin
Riemann solvers. Upwind schemes have been used very successfully for gas dynar
calculations, where the Riemann problem can be solved exactly and many approxin
Riemann solvers are available. For more complicated systems like the granular flow mc
considered here characteristic decompositions are often not available, and the Rien
problem cannot be solved analytically. Therefore we have chosen an alternative approa
high-resolution shock-capturing, namely the recent nonoscillatory central (NOC) scher
first introduced by Nessyahu and Tadmor [30]. While upwind schemes are higher or
extensions of the classical Godunov scheme, central schemes build upon the (also cl
cal) Lax—Friedrichs scheme [23]. This scheme avoids characteristic decompositions
Riemann solvers by the use of a staggered grid. When used together with piecewise
stant spatial reconstructions, the Lax—Friedrichs scheme is more diffusive than Godun
scheme. However, when one combines the scheme with TVD-type piecewise linear re«
structions, it becomes competitive with the upwind schemes. Recently, central schemes
been extended in many directions; see, e.g., [1, 2, 18, 27] for multidimensional extensic
[31] for an adaptive staggered scheme, [26, 28] for third- and higher order schemes,
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[21, 22] for central schemes on nonstaggered grids, which are precisely at the borderlir
central and upwind schemes.

Here we adapt the second-order NOC scheme of Nessyahu and Tadmor to include an
pressure coefficient, which has a jump discontinuity as the flow travels from an expanc
into a contracting region, and to treat the source term, which is due to the spatially vary
topography and the gravitational force. The resulting scheme works well both in smo
regions and at shocks, which are captured within two mesh cells and without any oscillatic

Besides the formation of shock fronts in the interior, avalanches may have a vacu
front at their margins. Similarly as for the equations of gas dynamics, the hyperbolic syst
degenerates at the vacuum state. Many shock-capturing upwind schemes produce ne
heights at these points and subsequently break down or become completely unstable. \
our NOC scheme is remarkably stable at the margins, it does not capture the vac
front as well as the Lagrangian moving mesh scheme. To overcome this imperfection,
augmented the NOC scheme with an algorithm that tracks the vacuum front. The combi
front-tracking, nonoscillatory central scheme is accurate and robust both at shocks ar
the margins of the granular avalanche.

The ensuing analysis commences in Section 2 with the presentation of the governing
equations in conservative and nonconservative form; then the jump conditions of mass
momentum at singular surfaces are stated and the solution to a single shock wave (a hydr
jump) are presented. Section 2 closes with the construction of exact similarity solutic
of a parabolic heap moving down a rough incline. Section 3 introduces the numeri
techniques. At first the Lagrangian integration technique is described; it is followed
the presentation of the nonoscillatory central scheme. In Section 4 we augment the N
scheme (which uses a fixed Eulerian grid) with a Lagrangian-type front-tracking metr
in the marginal cells. Section 5 elaborates on numerical results. The travelling shock w
cannot be handled by the Lagrangian method, but the NOC scheme can handle it
very little diffusion across the shock. On the other hand, the parabolic similarity soluti
is well produced by the Lagrangian integration technique, but much less accurately by
NOC schemes unless Lagrangian front-tracking is introduced for the marginal cells. |
also shown that the NOC scheme with piecewise linear spatial reconstructions apply
standard TVD-type slope limiters exhibits some oscillations near smooth local maxir
We remove these oscillations by incorporating a piecewise quadratic weighted essent
nonoscillatory (WENO) reconstruction into our scheme. Our final numerical experime
combines all the difficulties treated in the paper: an avalanche with a vacuum front
the margins expands as it flows downhill and contracts as it hits the flat runout (so
earth pressure coefficient changes discontinuously at the transition point). As the avalal
comes to a halt at the bottom, a shock wave develops and propagates upslope. Our
front-tracking scheme handles this challenging flow very satisfactorily. Section 6 prese
conclusions and gives an outlook for further work.

2. GOVERNING EQUATIONS

A detailed derivation of the Savage—Hutter theory has been given in [33, 34]. Here
confine ourselves to a brief description. Although cohesionless granular materials ext
dilatancy effects numerous experiments have confirmed that during rapid dense flow
reasonable to assume that the avalanche is incompressible with constant uniformagensi
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During flow a body behaves as a Mohr—Coulomb plastic material at yield. As the avalan
slides over the rigid basal topography a Coulomb dry friction force resists the motic
The basal shear stress is therefore equal to the normal basal pressure multiplied
coefficient of friction tars, wheres is termed the basal friction angle [19]. Scaling analysis
isolates the physically significant terms in the governing equations and identifies th
terms that can be neglected. Plane flow configurations are our focus in this paper, so d
integration reduces the theory to one spatial dimension. The leading order, dimensionl
depth-integrated equations for the local thickness of the avaldnahd the momenturu

(u is the downslope velocity) reduce to

oh 9

— 4+ —(hu) = 1
5t T v =0 1)
a(h
(at“) —(hu + Bxh?/2) = hs, 2
with net driving force
: ) az°
Sy = Sin¢ — sgn(u) tand (Cos¢ + AkuU) — ¢ cosga—x, 3)

wherex is the arc length measured along the avalanche telakgnotes the height of the
basal topography relative to the track (usuafly= 0 in one spatial dimension), agdand

Ak are the local slope inclination angle and curvature of the track, respectively. The te
sgnu) selects the orientation of the dry Coulomb drag friction, ard 1 is the aspect ratio
of a typical thickness and length of the avalanche. Note that Egs. (1) and (2) are writte!
conservative form [8], while in the original SH theory the smoothness assumption allo
the momentum balance equation to transform to an evolution equation for the velocity, v

du 1 06y

,Bx

— 4
dt X 28x )

The factorgy is defined agx = ¢ cos¢ Ky and the earth pressure coefficiéfy is given
by the ad hoc assumption

Ky forou/ox > 0,
Kx = )
Kxpass  fOr du/ax < 0,
with
Kyegpass = 2(1F /1 — coR ¢/ cog 8) seC ¢ — 1, (6)

and¢ is the internal friction angle of the granular material. Note that the values of the ea
pressure coefficierK, are based on the postulation of Mohr—Coulomb plastic behaviot
for the cohesionless yield on the basal sliding surface; see Savage and Hutter [33, 34
details. In this theory the earth pressure coefficképtis assumed to be a function of the
velocity gradient; i.e.Ky = K4 (du/dx).

The governing equations look like the shallow-water equations, but because of the ju
in the earth pressure coefficiers,,,,,... the source terns,, and the free boundary at
the front and rear margins, it becomes much more complicated to develop an approp!
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numerical scheme to describe the flow. The original Lagrange finite-difference scheme |
is implemented for the equation Systems (1) and (4) in Lagrangian form, with primiti
variablesh andu. The shock-capturing scheme developed here is applied to the systen
conservative form (1) and (2), where the conserved quantities are the avalanche thick
h and the depth-integrated momentum= hu.

In vector notation, Egs. (1) and (2) take the form

w+f,=s, ©)

h m 0
W= (m) f:(mZ/h+ﬂth/2)’ and 5= (hs«) (®)

This form is more convenient for mathematical analysis than that of (1) and (2).

where

2.1. Jump Condition and Travelling Wave

The Savage—Hutter theory can be used to model the upslope propagating travelling sl
wave observed in experiments [5, 7] by introducing the jump conditions (see Fig. 1) of
balance equations (1) and (2) for mass and momentum,

[hu-Wnl =0, )

[%mu—mg+%ﬁmﬂ]=a (10)

whereV, is the normal speed of the singular surface. Let us suppose gt 0 (for
example, this is always satisfiedif= §; i.e.,Ky,, = Ky,,.). Substituting (9) into (10) (i.e.,
eliminating V) yields the following relation between the depth ratib,;= h=/h*, and
the velocity difference:

~ CH+1/H-1\2
ut —u")?=gh Z(H) ) (11)
N
N~
-V
! h-
! - u-
Y| — =y |

| ¢

FIG.1. The plane travelling shock wave can be interpreted as a jump in thickness and velocity separating
body of the avalanche into two parts on a plane with inclined anghe andh~ are the thicknesses of both sides
andu™ andu~ are the velocities, respectively, whereas this jump travels with veldgityp slopes.
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For an upslope travelling shock wave with travelling wave spéednd corresponding
depth ratioH, the factors, is a function of material and topographic parametgrs, and

¢, which are given by the selected material and topography. Provided that the depths be
and after the shoclk* andh~, are known (they can be determined by experiment) and th
downslope velocity is also given (it is normally equal to zero), the upslope velocity can
determined by using (11):

uf=u =+ (12)

H-1r H+1 1z
H [ 2 '

Note that the term under the square root is positive for all posiivdf H = 1 then
ut = u~, which indicates that no shock wave (discontinuity) takes place. Thus, veloc
jumps and depth jumps occur together.

By inspection of the mass balance equation (9), the velocity of the shock is given by

Hu  —u*

H+1
Vp = i
H-1

1/2
=u F |:,3Xh_ W:l . (13)

Note that ath* tends toh = h—, u™ tends tou = u~ and
Vh— UF [,Bxh]l/zs (14)

so we have recovered the characteristic speeds of the shallow-water equations. Nov
apply Lax shock inequalities [24] to single out the physically relevant branches of the shc
curves: for the first family, with characteristic spaged- ./Bxh, we require that

1/2
"= BRI Vo = u = | ph s
2H?2
which impliesH > 1 (recall that the upslope state-" lies to the left of the shock). Anal-
ogously, for the second family, with characteristic speed./Bxh, we obtainH < 1. For
example, an upward jumm({ <h™) can only be carried by a shock of the first family,
and in this case™ > u™ > V,, so particles which cross the shock are condensed and slc
down.

2.2. Similarity Solution

Consider the motion of a finite mass of granular material along a flat plane, ise.
constant and« = 0in (3). In [33] one particular similarity solution to a moving boundary
problem of finite mass was derived; this solution is now generalised (see [36]). To this ¢
we introduce a moving coordinate system with velocity

ot
Uo(t) = ug(0) +/ (sing — tané cos¢) dt (15)

0
on a plane with inclination angle. This velocity is due to the net driving forcg in

(3), where we assume that the velocity is positive for positive times; i.e(usgnl. The
relative velocityl in the moving coordinate system is then given by

U =u— ug(t). (16)
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A symmetric bulk is considered and the origin of the moving coordinate system is selec
to lie at the centre where the surface gradiéhy,dx, is zero. To keep the symmetric depth
profile during the motion the relative velocity is further assumed to be skew—symmet
U, t) = —U(—¢&,t), where

t
£ =X —/ Ug(t) dt’ a7)
0

indicates the distance from the origin in the moving coordinates. Providedh)as the
distance from the coordinate origin to the margin at timehe physical domain occupied
by the granular mass can be mapped frerg(t), g(t)] to the fixed domain+1, 1] by

_ 1
10

With this coordinate mappingx, t) — (1, ), the model equations (1) and (2) reduce to

t
n {x —/ uo(t’)dt’}, wheren € [-1, 1]. (18)
0

ah goh 19

2 2 hiy =o, 19
ot ngan_l_gan(u) (19)

ol gou 1/ 0u oh

=S (u=+8— ) =0 20

ot n98n+g(u8n+ﬁxan> (20)

where ther is again replaced biyand we have usegl = dg/dt = —uq/n.

Now we assume that(n, t) varies linearly inp. Since the margins move with relative
speedstg'(t), this yieldsl(n, t) = ng'(t). Now the evolution equations (19) and (20)
reduce to

oh /
-ﬁ+%h=a (21)
"t ﬂgxg: —0, (22)

whereg” = d?g/dt?. Integrating (22) subject to the boundary condition eiti@gr= 1) = 0
orh(n = —1) = 0, it follows that the thickness is described by

gy’ ®)
T

This implies that the avalanche body keeps a parabolic thickness distribution during
motion. With the thickness distribution (23) one can easily obtain the total Massbe

h(n, t) 1 -n. (23)

EFt 1 2 91192
M=/mh@JME=/|WMMGNn=* . (24)
& -1 3 ,BX
Since mass is conserved,
d zg !~ /!
O—EM—g—ﬂX(Zgg +99"). (25)

This relation can also be derived directly from the mass balance equation (21).
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Changing the independent variahl¢o g(t) and lettingp(t) = g'(t), Eq. (24) can be
written as

dp K
- 2

where 3,M = 2K. The similarity solution is then obtained by solving (26) with initial
conditions,g(0) = gp and p(0) = po:

204y _ 1 1 2
P = 2K (90 g(t)) ML @7

With the definitionag = 2%, 85 = p§, andG = (ag + Bg)g it follows that

VGG
Tk et B¥*. (28)
We now use the relation
d JG
3alVGVG — 2K + 2K In(v/G + /G - 2K)] = e

and integrate Eq. (28) to yield

VGVG = 2K + 2K In(+/G + +/G = 2K)
—[VGVG = 2K + 2K In(W/G + VG = 2K)]1—o = (g + Bg)¥/t. (29)

With go = 1, po = 0 we obtain the Savage—Hutter solution [33]

VIVI—1+In(/G+ Vg —1) = V2Kt, (30)

for whichg(t) > 1. Both (29) and (30) are implicit evolution equations gt). Onceg(t)
is deduced, with the presumptidiin, t) = ng'(t), the complete solution is then given by
(23) and (27),

1 1 12 3M
U, t) =nd2K | = — — 2} . h(n,t) = —— (1 —n?), 31
U(n,t) n{ (90 g(t)>+po (.1t 49(t)( n°) (31)

wheren is defined in (18). In the present similarity solution it is presumeduliat| = 1,
which means that > 0 for allt > 0. From (16) and the presumption thil, t) = ng'(t)
it follows that

u(t) = ug(t) + l(t) > 0= g'(t) < up(t), forallt>0. (32)
It is very important to verify that the velocity is consistent with condition (32) to keep th

parabolic similarity solution valid. The generalisation (29) of (30) was needed to have ex
solutions with nonvanishing initial velocities (for further details see [36]).
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3. NUMERICAL SCHEME

The numerical schemes employed in this paper are designed to explicitly solve the sys
of equations in 1D and we here introduce a Lagrangian algorithm and an Eulerian shc
capturing NOC scheme.

In the Lagrangian technique [33, 34] the avalanche body is divided into several cells.
purpose is to find the velocity of the cell boundaries in order to determine the cell bound
locations for each time step, so it is a moving-grid method, whereas the NOC schem
built on a stationary uniform grid and gives a high resolution of the shock solutions withc
any spurious oscillations near a discontinuity.

In the Lagrangian method the value of the depfhis defined as the volume average
within the jth cell for timet", which is bounded by;_1(t) andb;(t), and the boundary
b; (t) moves with the velocity;. Whilst, in the NOC scheme the value of the discretise
variabIeUJf‘, U = h, mis defined on the mesh as the volume average withirj thhenesh
cell centred at positiow; for timet", where thejth cell is bounded by;1/2 andx;j_1/».

3.1. Lagrangian Method

In the Lagrangian method [33, 34] the avalanche body is dividedNhtoaterial cells,
wherex = b;_1(t) andx = bj(t) denote the boundaries of the c¢lat timet; see Fig. 2.
These boundaries move with the avalanche velocity; i.e.,

d
g0 O =uj® = udb;®). ).

Integrating the mass balance equation (1) over the cell yields

b;

bj
ah d d d
/{E_F&(hu)}dx:a/th:Oi avcellj =0 (33)
b b

i-1 i-1

and implies that the volume (mass) of the cell is conserved during the motion. Becaus
this, the mean height of thigh cell can be determined by

Vcell-
= ——7 (34)
] n n
by —Dbj_y
The computations proceed as follows. It is assumedithat?, andu?“/ 2 are given as

initial values and the new location of the cell boundlelfi?l after an elapsed timat is

! {
T 1 L]
by ¢ b: c2 b: c¢s bs s oe e bvs Cve bne Cvi bw: Cv bw

FIG. 2. The avalanche body is divided intd elements with average deplh, wherec; is the centre of the
jth element.
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given by
bt = b + Atu] "2, (35)

Note that here the velocity; indicates the boundary velocity bf. The momentum balance
(4) allows the velocity of the cell boundary at tirtie*/? to be determined,

_ oh\" h" d(cosz Ky \"
um2 =yl 1/2+At{s'-’—ecos;j(Kx)r-‘(—) —¢ J+1/2< X ) } (36)
! ! ! ox/, 2 X J-

The net driving acceleraticsf as given by (3) is

: - _ az°
s = sin¢j — sgn(u] %) tans{ cosgj + Ak (U 1/2)2} — £C0S¢; <ax> L@
j

whereg; represents the local inclination angtg,is the local curvature, anef denotes the
local basal topography. Note that the last term at the right-hand side of (36) contains
gradient of the earth pressure coefficient, which is neglected in the numerical schem
Savage and Hutter [33, 34].

The earth pressure coefficiel is determined by the ad hoc definition

n—1/2 n-1/2
Kyers foruj+l =’y ,

(KX)T = (38)
-1/2 -1/2
Ky fOr U2 < uf™Y

in [33, 34]. The surface (depth) gradients in (36) are determined by the depths of the adja
elements

X/ Clyr—Cf bi 4 — b4

wherec] represents the centre of thjeh cell, c] = (b +b7_,)/2, at timet =t"; see
Fig. 2. The height at the cell boundaty,,1/, is given by their mean values in adjacent
cells,hj 1o = %(hj + hj41), and the gradient of the earth pressure coefficient is

<a(cosg Kx))n _ cos¢j+1(Kx)| 1 — €OS¢; (Kx)T' (40)

09X j ¢l —¢f
However, while this method is excellent for classical smooth solutions, it loses numeri
stability if shocks develop. Shocks are initiated when the avalanche velocity is faster i
its characteristic speed and the avalanche front reaches the base of the slope or a solid
Many detailed investigations about granular shocks were made by Gray and Hutter [5]
which the shock waves are considered to be an important property in the granular flows
avoid the numerical instability caused by the shocks, an artificial viscosityi@fm/dx?2
is introduced and added to the right-hand side of (37) for numerical stability, e.g., [14, .
34], where the artificial viscosity was found to have values betwee@Dand 003.
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3.2. NOC Scheme

The nonoscillatory central difference scheme of Nessyahu and Tadmor [30] is a secc
order-accurate extension of the classical Lax—Friedrichs scheme [23]. Let us briefly rev
the NOC scheme:

We consider the Savage—Hutter equations in the conservative form (7), (8waith
(h,mT as basic variables. Lef} denote the cell average over the intervgLh 2. X;1/2]
at timet", and let

— Xj —
LW, (41)

_ X
N \Wh
w(x,t)_wj+ Wi

be a piecewise linear reconstruction over the cell, Wﬁé‘relenotes the cell mean deriva-
tive determined by a TVD limiter [25] or a central WENO cell reconstruction [26]. Th
main conceptual difference between the NOC schemes and standard, upwind, finite
ference schemes is the use of a staggered grid. Atttirfe= t" + At, the cell averages
VV’]-‘I}/Z are evaluated over the intervalg [ x;+1]; see Fig. 3. As a consequence, the bound
aries of the cells at the new time level are trentersof the cells at the old time level,
namely the pointsx; and x;;1. At these points, the piecewise polynomial reconstruc
tion (41) of the cell averages at the old time let&lis smooth, and it remains so for
t < t"1 under an appropriate restriction of the timestep (see (49) below). Therefore,
flux across the boundaries of the cells at the new time level may be evaluated by Ta
extrapolations using the differential equation and standard quadrature rules. Here we
the midpoint rule in time to achieve second-order accuracy. The resulting update takes
form

=

N+l

At 12 ongrzy , AU npape
Wit12 = E(VV?HM + W 3) — H(fjﬂ =) + 7(

n+1/2
Sii1a +Sj134).  (42)

as illustrated in Fig. 3b. The valueswf , , andw}, ; , are determined by the reconstruc-
tion (41) over thejth and(j + 1)th cells; i.e.,

1 1
WA W'+ =W A W' - W
Wit1a = Wi+ 4W1’ Wita/a = Wit 4WJ+1' (43)
a b
) t ) t
J JH J+2 J+1/2
n+2 * . . TR N ; . o
: | : 1
N 1 B 1
J+1/2 : J3/2 ! JH/e Jj3i4
n+1 - - - A2 T : T .........
T L
I 1
B N ! 1
n g - > - > X n— * & X
J JH J+2 J J+1

FIG. 3. Diagram of NOC-S scheme. (a) Grid points computed by the NOC-S method. (b) NOC-S compu
tional diagram, wher® indicates the grid points at time levelandn + 1, B represents the quadrature points
for the fluxesf across the cell boundarie®, shows the quadrature points for the source tesnasid A indicates
those for the staggered cell averages at the originalttime
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The transport flux at the quadrature poingg;, t"*%/?) and(x;1, t"t%/2) is approximated
by Taylor extrapolation in time,

_ _ At _
fjn+l/2 — f(an-&-l/Z)’ erm+1/2 = WT + ?(aw/at)?, (44)

and similarly, the source terrsat the quadrature poing; 1/4, t"*%/2) and(x; 34, t"t¥2)
are approximated by space—time Taylor extrapolation

1/2 1/2 1/2 At _ 1_,
Siya = S(WJiija). Wilia = W)+ —(QW/00)] + JW),
(45)
1/2 412y —ntl2 o At -
Siiga =S(Wiiga), Wiiga=W+ — (Ow/ M — Vi
The temporal derivativédw/at){ in (44) and (45) is determined by using (7),
(@w/ot)] = —(0f/0x)" + 8] = —A|W, /AX + 5], (46)
where
n n n 0 1
@f/0%)] = (A)f@w/ax)]. A=of/ow=| g (47)
h? xt

andA is the Jacobian df. Alternatively, one may also use the Jacobian-free approach
Nessyahu and Tadmor [30] and set

(df/0x)] =17/AX,

where the cell mean derivati¥éof the flux is again determined by a TVD limiter. L&t®
be the maximum wave speed,

a™ = maxjuj| + /ARy, uj =mj/hy forh; 0 (49)
all j
The CFL condition
At a1 .
~lam <3, for all | (49)

is needed to guarantee that the solution remains smooth at the space—time quadrature p
so that the Taylor expansions (44) and (45) are justified.

Note that the NOC scheme (41)—(49) completely avoids the expensive Riemann sol
used in standard upwind schemes on nonstaggered grids. The resulting staggered sct
are easy to code and computationally efficient and can be applied to general systen
conservation laws, where the solution of the Riemann problem (i.e., the initial value probl
with piecewise constant data) may be complicated or even impossible.
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4. FRONT-TRACKING METHOD

In many applications, the region covered by the granular material has a finite exten:
and is limited by a free boundary which moves with the flow velocity. Outside this regio
there is a vacuum, so the avalanche helghthd momentunm are zero, and the velocity
u = m/his not well defined. The Lagrangian method handles this situation automatica
since the computational domain moves with the material flow. The NOC scheme discret
the differential equations on a stationary uniform mesh. Note that in general the mar
pointsxg; (the front margin) andc?, (the tail margin) lie between grid points, so that it
is impossible to point out the margin locations without extra treatment. Furthermore
is not straightforward to determine the proper cell reconstructions over the margin ce
Figure 4 illustrates an example of depth reconstruction over the front margin cell determi
by various TVD limiters. Here and in the following we suppose that at timéhe front
margin lies in thefth cell, X;_1/2 < Xf; < Xt+1/2, and the tail margin in theth cell,
Xi—1/2 < X < Xey1/2-

Since our quadrature rule for the fluxes (44), (46), (47) uses a Taylor expansion of
solution, different limiters will lead to different values of the integrals of the fluxes acro
Xt X [tn, thya] @and X x [tn, the1]. TO complicate the situation even further, part of these
boundaries may lie in the vacuum region. Note that the fluxes across these bound:
determine the outflow from the avalanche body, so inappropriate cell reconstructions c
the margin cell may cause too much outflow from the avalanche body or even result |
negative depth around the margin; see Fig. 5a. Thus, the difficulty is not only in determin

superbee

0.0 t f f : S
Lyp-2 Xyt Xy Lpss

'
s L N
P

Xy-2 Tyt Lyst

FIG. 4. Example of the depth reconstruction (solid line) determined by different TVD limiters, where tr
circles denote the cell average. The front margin lies infttrecell. In the Eulerian scheme one cannot determine
where the margin lies. Outside the margin there is no material, so that the average depths of the ¢elis> 1
are equal to zero. Different limiters lead to different outflows from the avalanche body.



282 TAIET AL.

@ Fy(e) = ha(z) or haz) ? ®)

TFt

FIG. 5. The reconstruction of the depﬁq (x) within the marginfth cell. (a) Cell reconstructions based on
TVD limiters cannot determine the location of the margin point. Inappropriate reconstructions over the margin
may result in wrong values of the flux at the gridpoimt which may cause too much outflow from the avalanche
body. (b) Our front-tracking method uses the unique piecewise linear reconstrhgtionover the margin cell,
which vanishes at the margin poixi; and preserves the cell average. Thus, a reasonable flyxsiexpected.

the correct numerical flux at the grid point; the wrong numerical flux may also cause vast
stability problems. Adding a thin layer over the whole computational domain can circumve
the numerical stability problem, but it is then difficult to determine the locations of th
margins, and the numerical flux out of the avalanche body may even become unexpect
large, which results in large numerical diffusion, while there will be permanent outflow fro
the avalanche body. Therefore, a more refined treatment of the evolution of the avalar
margins is needed.

In [29], Munz developed a method for tracking vacuum fronts in gas dynamics. H
approach is based on appropriate reconstructions of cell averages behind the front ar
the solution of a vacuum Riemann problem, which is used to track the margin location:
every time step. Here we develop an alternative front-tracking method, which is basec
a piecewise linear spatial reconstruction of the conservative variables up to the front
Taylor extrapolations in time. Contrary to [29] our approach is Riemann-solver free a
therefore fits perfectly into the framework of central schemes.

The structure of our front-tracking algorithm is as follows: At the beginning of eac
time step (at time;,), the cell average@'; of the conservative variables and the position
of the margin pointxt, (front) andxy, (tail) are given. In the first step, a piecewise linear
reconstruction of the data is defined, the front (tail) velocity is determined, and the frc
(tail) is propagated from timg, to t,, 1. In the second step, the conservative variables ar
updated via

g+l

Wit = —/ w(x, t )dx— = {F(xj, ) — f(xj_1, D)} dt

tn
th+l

+— / s(x, t)dx dt. (50)

Away from the front, the integrals are evaluated by the midpoint rule as in (42). Spec
care has to be taken in the two margin cells (the cells containing the front and the tail). E
of the integrals on the RHS of (50) may contain parts of the vacuum region. Therefore,
need to replace the midpoint rule by more delicate quadrature rules over the region cowvs
by the granular material.

In order to guide the reader through the details of the algorithm, we give an outli
of the rest of this section. In Section 4.1, a particular piecewise linear reconstruction
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the conservative variables near the front is derived. In Section 4.2, the front velocities
computed, and the fronts are propagated to the new time level. In Section 4.3, four c:
are distinguished for the location of the front relative to the fixed underlying grid, ar
their geometry is discussed. In Sections 4.4-4.6, the three integrals on the RHS of (50
treated: the data, the fluxes, and the source terms. In Section 4.7, a special space—time "
extrapolation of the conservative variables near the front, which is needed to compute
solution at the space—time quadrature points of the three integrals, is derived. Sectior
summarizes the algorithm.

4.1. Reconstructing the Conservative Variables

In the following we focus on the front margin. The rear margin can be treated complet
analogously. Suppose as before that the front margin is contained frihiteell,

Xpt € (Xf—1/2, Xf41/2]-
We require thatthe piecewise linear reconstruciox, t,) satisfy the following two criteria:

o first, it should vanish at the margin points, and
e second, it should preserve the cell averages.

These criteria uniquely determine the reconstruction in the margin cells. If we denote
cell-averaged depths of the front margin cellhyy then the depth reconstruction is defined

by
X—=Xft o —2h;

ﬁ = o
1) AX 7T T (AXe/AX)?

for x € (Xt_1/2, Xrt]. (51)

Outside the margin the depth is equal to zero. Xheandxr_1,> represent the locations of
the front and the internal boundary of the front margin cell, respectively (see Fig. 5), ¢
AXpy = Xpt — Xi—1/2 IS its length. The reconstruction af = hu, m(x), is defined anal-
ogously. Note that in (51), the denominatdrg;/AX may in principle become arbitrarily
small which could cause numerical instability. However, we will see in Section 4.7 that
those cases where the numerical derivatﬁl]eandn_ff are actually used\xg¢/Ax will be
bounded away from zero.

4.2. Propagating the Front

Our definition of the reconstructions of the conservative varidbéesim over the margin
cells leads to a constant reconstruction of the velocity over the margin cells,
Me(x)  Mp(X = Xp)/AX my

MO T R0 T R xeo/AX Ty

so it would seem natural to define the margin velocity by the constant value
ug, = —. (52)

However, this assignment would have two disadvantages: first, it is only first-order accur
Second, as can be seen from (51), the temasndh ¢ are on the order of

O(AX)O((AXEt/ AX)?).
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Depending on the location of the front relative to the grid, the latter term can becol
arbitrarily small. Dividing these small numbers in (52) may result in large errors for tt
front velocity.

Therefore we replace (52) by the simple Taylor extrapolation

Ui = Uf_1 + (AX/2+ AXg)(Uf_1 — Us_p), (53)

whereu; := m;/h;. This assignment is both numerically stable and second-order accur
in space. In order to obtain second-order accuracy in time, as well, we approximate
margin velocity at time"+/2, Using the evolution equation (4) for the velocity we define

n+1/2

t
Upg 7" = Ug + 5 (Sf Ax — Beh). (54)

2A
Here we have used the fact thatanishes at the front. The location of the margin at the
new time level is then given by

n+1/2

P = X2, + Atug, 7 (55)

Xpt

4.3. Intersecting the Front and the Grid

Once the new location of the margin is given, the new margin cell at the next time ste|
then determined. The CFL condition (49) guaranteegtiiaty At| < Ax/2, sothe margin
point xgt,11 can at most pass through gridpokw, during one time step. For example,
with this condition the front can only lie in one of the two cells adjacent to the mdtrtin
cell, which are thg f — %)th and(f + %)th cells; see Fig. 6. There are four possible case
for the motion of the front margin point,

e case IxP, < x¢ andx¢_q < x’”rl < Xt,
e case X2, > x; andxt < th < Xf41,
e case ll:x2, < x¢ andx¢ < X2t < X¢ 41,2,
e case VX, > x¢ andxs_1/2 < XE{* < xy,

wherex?, andx{* are the front locations &t andt"+*, respectively. In cases | and Il, the

front does not pass gridpoirt, while in cases lll and IV it does; see Fig. 6. In each case w
have to determine the cell averages of the relevantegii§ /2 andwi’; /2 by integrating the
governing equations ovek{_1, x¢] x [t", t""1] and [x¢, X;,1] x [t", t"*], respectively;
i.e., we have to evaluate the three integrals on the RHS of (50). These integrals involve
dataw, the fluxesf, and the source term In the following, we derive quadrature rules
which are exact for linear functions. The tail margin can be treated completely analogou

4.4, The Integral of the Data

First we integrate the linear reconstructiomx, t,) of the data at timé, over the interval
[x:-1, X¢]. In cases | and lll, this interval contains the front, while it does not in cases
and IV. We obtain

1 .
1 1 IWs_ 34+ WP in cases | and IlI

—/ w(x,t" dx = i ! f _ (56)

AX Jx, 5(Wt_3a+W]_;,) incaseslland IV
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FIG. 6. The four cases for the propagation of the front margin.
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Herew_g/4 is given by (43) andv§_, , by (51). With a given front locatiom®, andw?

itis
XB. — Xg 2
Wl =201 — (F‘ ) . 57
f-1/4 f{ XEt _ Xf71/2 ( )

Next we consider the integral over the intervad [ X 11]. Using (51) once more we obtain

1 X 0 in cases | and Il
n —_
Ax w(x, tMdx = W ( X2, =i (58)

Xf41 f

2
) in cases Il and IV

XE—X1-172

4.5. The Integral of the Fluxes

Due to the restriction of the time step, the only grid position which is possibly intersect
by the front during the time interval], tn 1] is X = X;. Therefore, the flux at; _; can be
evaluated exactly as in the interior of the domain,

tn

1
o fwo, tydt= 2, (59)

tha

wheref"1/2is given by (44). The flux at;_; vanishes, since this point lies in the vacuum

region during the whole time interval. It remains to compute the flux;atin cases I
and 1V, where the front crosses, we use the midpoint rule in time over that part of the
interface which lies within the region covered by granular material.tlatd At be the
midpoint and the length of this time interval.tff is the time at which the front intersects
Xt , defined by

XP+ (= t)UR, = X1, (60)
then
— t t*)/2 incase lll
o {(n+1+ /2. -
(th +1%)/2 in case IV
and
— ther —t* incaselll
)t ! 62)
t* —tn in case I\,
The midpoint rule for the flux now gives
0 in case |
1 b .
= [ fwixs . hdt = L FiTY? incase i 63)

At

tn-¢-1

2fL incases llland IV

Herefl = f(w(xs, t)). In Section 4.7 we will extrapolate the solutianto the quadrature
point (X, t).
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4.6. The Integral of the Source Term

The source terns has to be integrated over the quadrilateral regions shown in Fig.
Let us call these areas of integrati@n In the following lemma, we give a quadrature rule
which is exact for linear functions vanishing at the front.

LEMMA 4.1. Leta b, > 0and
Qi={x,t):f<t<f+r,x<x<fk+a+b-ayt -1/}

Let s be a linear function ovef2 which vanishes at the boundary=X +a+ (b — a)
(t—1)/r. Then

2 2
/ 1 ws(ﬁ,f+t/2) =tosX t+1/2.  (64)

S(X,t)dxdtzét b
Q

Proof. W.l.o.g. letk = { = 0. The general form ofis given by
sx,t) =(Xx—a— (b—at/r)o,

whereo is a real constant. W.l.o.g. let= 1. Then a direct computation gives that
T 5 2 T
s(x,t)dx dt= —E(a +ab+ b%) = ws| 0, >
Q

Equation (64) may be interpreted as a special quadrature rule with(Rotle 7/2). We
have chosen this node because it appears also in the quadrature rule for the fluxes tr
in Section 4.5, so we can minimize the evaluations of the solwtion

In the following we apply the lemmato the four cases.Qéie the region covered by the
granular material. First, we compute the integral over the intersectienvaith the union
of the (f — 1/2)th and the(f + 1/2)th cell, 2 = QN ([X;_1, Xi+1] x [t", t"1]). Using

R =X 1,t =th,a=x, — X¢_1,b=x}" - xr_1, andr = At in Lemma 4.1 gives

tl’H»l

Xf+1 1/2
/ S, O dx dt = w18V (65)
Xf-1

trl
with

o AGR xe) O e ) OB ) + O )
1= 3 XEt—FXETl—ZXf_l ’

(66)

Similarly, for the integral oveR2 N ([Xf, Xf41] x [t", t"*1]) we obtain

tl’H»l

Xf41 _
/ s(x, t) dx dt= wss}, (67)
Xt

tn
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wheret = t"%2in cases | and Il antlis given by (61) in cases Ill and 1V, and the weight
is given by

o

in case |

() 4 Gao) (e on )+ (o)

At
3 Xn +Xn+1—2X

wf = - Ft TAFt f (68)
A (xEt = x1) in case I
A (xR — X¢) in case I\

HereAt is given by (62). The integral ovex{_1, x¢] x [t", t"*1]is then computed by sub-
stracting the integral ovexf, X 1] x [t", t"*1] from that over Kk _1, X5 41] x [t", t"+1],

tHL g

/ s(x, tydx dt= w;_18 52 — wys. (69)
t

n Xf-1

This completes the definition of the quadrature rules for the three integrals on the RHS
(50). It remains to extrapolate the solutiarto the new quadrature poifks, t) near the
front.

4.7. Determination of the Physical Quantities at

In cases Il and IV the margin point passes the cell boundargtt* and goes into the
neighboring cell. The outflow in case Il and the inflow in case IV through the cell bounda
atx; as well as the source term in the new and old margin cells are essential for determir
the cell average of the margin cells in the front-tracking method.

In case lll the physical quantities flow through the boundgrynto the (f + %)th cell
during the time intervaltf, t"*1]. The outflow is approximated by the value @, t),
wheret = 1(t™1 + t*). Note that

xer () = xp +Up 2E -, hxe (). 1) =0
6;ixh(xm(_),t_) = éﬁ} + O(Ab).
Therefore,
hT = hxr, T = (X5 — X&) _Al:(r'lJtrl/Z(t_— t”)ﬁ,f (70)
and similarly

1/2
(e = x@) —upe Pt
f.

m} = m(xs, D) = v

(71)
In case IV the physical quantities at the boundary, t) are determined in the same way, but
the time points are defined differently= (t"** + t*)/2 for case Ill and = (t" +t*)/2
for case IV. In (70) the numerical derivativg is given by (51). We now check that the
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denominatof Axg;/AX)? in (51) is bounded away from zero: In case Wxr/AX > 1/2
(see Fig. 6), and in case 1V,

AXet 1 At G0 1

Ax 27 axUr =~ CFb

where CFL is the Courant number, i.e., the left-hand side of Eq. (49).

4.8. Summary of the Front-Tracking Algorithm

The front-tracking algorithm may be summarized as follows:

1 . At,r At
Wiy, = 5@4/4 + 1 —apwi - Bﬁ + Bf?tl/ (72)
Wf-1 _ny1/2 wf i
s - —4d 73
+ Ay Of-1 A (73)
— E . wf
vV}jll/z:afw?—i-Bf} TSt (74)
Here
{O in cases | and Ill
of = X0 —X¢ 2 . (75)
(™% ;)" incaseslland IV
0 incase |
X At in case Il 76
T Ythpr —t* incaselll (76)
t* —t, in case IV
th in case |
_ thi1/2 in case Il
t= . (77)
(ther +t%)/2 incase lll
(th +t%)/2 in case IV

The weightsw_; andw¢ are defined in (66) and (68). The valuesaaix, t), needed
to determind} ands, are defined in (70) and (71). This completes the definition of th
update at the front margin. The tail can be treated completely analogously.

5. NUMERICAL RESULTS

In the following we present some numerical experiments. In Section 5.1 we comp
a travelling shock wave. In this case the Lagrangian method leads to oscillatory soluti
travelling at the wrong speed, while the NOC scheme yields correct sharp monotone st
profiles. In Section 5.2 we compute the parabolic similarity solution. Here the Lagrang
technique is superior to the NOC scheme unless the latter is equipped with the fr
tracking technique. We also discuss a tendency of the NOC scheme with piecewise lii
spatial reconstructions to produce small oscillations near smooth local maxima and s
how to remove these oscillations by using piecewise quadratic reconstructions. In the
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numerical experiment in Section 5.3 we compute an avalanche with a vacuum front at
margins, which forms an upward-propagating shock wave when it comes to a halt at a
runout. Our NOC front-tracking scheme gives a stable and accurate approximation of
challenging flow.

5.1. Travelling Shock Wave

In this test problem we are concerned with granular flow on a plane=0) inclined
chute (0< x < 36 dimensionless units), where the internal and basal friction angles are b
presumed to be equal to the inclination angles § = ¢ = 40°. That implies a nonac-
celerative flow;s, = 0, whose earth pressure coefficient is constapnt= Ky, = Ky ...
Selectinge = 1 and using (6) yield$3x = e cos¢ Ky = 1.84477. A jump of thickness
H =h"/ht =3 withht =0.3,h— = 0.9 is presumed at = 24. By virtue of (12) the
velocity difference is then determinegtt — u~ = 1.2148317, where the positive sign is
selected. Since an instability was expected close $00 as a singularity by sdo), the
downslope velocity is assumed tore = 0.1, so that the term sgn) is always unity. The
initial condition of this test problem is defined as

0.3, for0<x < 24,

h(x,0) = {0.9, for 24 < x < 36, (78)
1.3148317 for0 < x < 24,

utx, 0) = {0.1, for 24 < x < 36. (79)

From (13) the velocity of the upslope travelling wave is then expect¥gas—0.50741585.
For the boundary condition a constant inflonxat 0 and an outflow condition at = 36
are introduced.

5.1.1 Lagrangian Technique

By the Lagrangian moving grid method the governing equations (1) and (4) are solvec
virtue of (34)—(37). The initial deptrh?, of the jth element is taken to be the cell average
of the exact initial profile. The initial velocity of the boundan)?,, is given by the volume
weighted velocity of the adjacent cells. They are

0 0
fbtz,j h(x, 0) dx . fcf,i“ h(x, O)u(x, 0) dx
-1 j

] s (80)

J 0 0 ’ j 0 s
bj —bj 4 Jahix, 0) dx
]

whereb{ andb?_, are the boundaries of thigh cell att = 0, andc? denotes the initial
centre of thejth cell.

The constant inflow and outflow boundary conditions are executed by setting the de
gradientoh/9x at x = bg(t) andx = by (t) equal to zero, so thatu/dt = 0 = ug(t) =
Up(0) andup (t) = un(0) fort > 0 because the flow is on a nonaccelerating skpe 0.

Figure 7 demonstrates the simulated resits{ 60); oscillations develop as the shock
wave passes through, and these persist even if the time step is selected to be very s
The velocities of the cell boundary after the shock are sometimes faster or slower t
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FIG.7. Depth (left) and the corresponding velocity (right) profiles of the upslope travelling wave @t 3, 6,
where circles denote the computed results at the cell centres and the solid line indicates the exact solution
time step is taken to bat = 102 dimensionless time unit.

they should be and therefore oscillations take place. These oscillations propagate do
lope as time increases and no shock wave propagates upslope. This indicates the
Lagrangian moving grid technique is ill behaved and cannot describe the travelling sh
wave.

5.1.2 Eulerian Shock-Capturing Methods

The NOC scheme is applied to (1) and (2) on a 1D grid with 90 and 360 gridpoin
respectively. The initial conditions are transferred to the mean values over the cells be
the computing commences,

1 Xj+1/2 1
ho = — h(x,0)dx, u?

XJ+1/2h d
b Ax = h?/ (X, Ou(x, 0) dx. (81)

Xj-1/2 Xj-1/2

The constant-inflow boundary condition is implemented by the assignrgitjs= ho(0)
and mp(t) = mg(0) at x = 0. The outflow boundary condition is described by setting
oh/0x = 0 andam/ax = 0 atx = 36, where they are

Un =(4UN_1—UN_2) /3, for U =h, m, (82)

by using the cell averages of the closest cells for a second-order extrapolation.

Three different cell reconstructions were tested: the NOC scheme with Superbee |
iter (NOCS-S), piecewise linear & 2), and quadraticr(= 3) WENO reconstructions
[26]. Figure 8 demonstrates the simulated avalanche depth of the travelling wave pi
lem (circles) and a comparison with the exact solution (solid ling)-at6é dimension-
less time units. All of them are able to adequately describe this travelling shock we
problem.



292 TAIET AL.
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FIG. 8. Depth profiles of the upslope travelling wave computed by the NOC scheme Gtwith N = 360.
The solid lines indicate the exact solution and circles mean the computed results.

5.2. Parabolic Similarity Solution

This section is concerned with the simulation of the parabolic similarity solution ou
lined in Section 2.2. In the test problem the parabolic avalanche body is considerec
slide on an inclined flat plane in the domain<Ox < 36 dimensionless length units with
constant inclination angle = 40°. The basal and internal friction angles are simul-
taneously selected to be 30and the initial condition is chosen to gy =1 and
po = 0. On the inclined plane the initial depth and velocity distributions are mappe
into

h(x,0) = 1 — ((x — 4)/3.2)2

(*.0) « )/3:2) for x € [0.8, 7.2]. (83)
ux,0 =12
Our choice of the initial velocityi(x, 0) = up = 1.2, guarantees that condition (32) will be
satisfied for all times. This problem will serve as the standard test problem for the resolut
of the depth profile and the determination of the margin locations.

5.2.1 Lagrangian Technique

In the Lagrangian moving grid technique the model equations (1) and (4) are solved
virtue of (34)—(37) on a 1D grid. The boundary condition is given by setting the heights
the margin (front and rear) points to be equal to zbggx, t) = 0 andhy(x,t) = 0.

Figure 9illustrates the simulated result at the dimensionless timetuait 2, 4, 6 with
cell numberN = 16, in which the circles denote the computed results and the solid lir
indicates the exact solution. The avalanche body extends as it flows down and still ke
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FIG. 9. Depth (left) and the corresponding velocity (right) profiles of the parabolic similarity solutior
(Problem 1) computed by the Lagrangian, moving grid scheme at the dimensionless time 4rilts2, 4, 6,
where the avalanche body is divided into 16 cells, and the time interyetl is 1073

the parabolic depth profile. The velocity is keeping a linear distribution through the bt
body. It ensures the symmetric depth profile during the motion.

From the simulated results it follows that the Lagrangian moving grid technique not ot
describes the depth profile well but also determines the margin locations of the simila
solution very accurately. There is excellent agreement between the simulated results an
exact solutions, see Fig. 9. The motions of the front and rear edges of the avalanche |
in the similarity solution are illustrated in Fig.10. The circles denote the computed rest
by the Lagrangian moving grid technique and the solid lines indicate the exact location:
the margins. They are also in excellent agreement.

The Lagrangian method is also tested by different grid numbers. Figure 11 shows the
sults computed with different grid numbel$,= 16, 32, and 64, respectively. With different

T T T T T T T T
9. Lagrangian 1
-+
Q; 7« [
g L
n
85
E
st
12}
83 |
£
o -
Lt
| | | | | | | |
0. 4. 12. 20. 28. 36.

dimensionless distance, X

FIG. 10. Locations of the front and rear edges of the avalanche body in the parabolic similarity soluti
problem as they evolve in time. The circles denote the results computed by the Lagrangian moving-grid techr
(N = 16), and the solid lines indicate the exact margin positions. They are in excellent agreement.
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0.8 t=6 Lagrange B
h
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0. 4. 8. 12. 186. 20. 24. 28.

FIG. 11. Depth profiles computed by the Lagrangian moving-grid technique for the parabolic similarit
solution problem (Problem I), where the avalanche body is divided into different numbers oRcell46, 32, 64.
All the results are shown at= 6 and the computational time intervaldg = 1073, The number of the cells does
not influence the good agreement between the simulated results (circles) and the exact solutions (solid line)

grid numbers this method can always achieve excellent resolutions when compared
the exact solutions.

Calculations were also performed with initial conditipn=£ 0; results turned out to be
as convincing as the ones above. For this reason they are not presented here [36].

5.2.2 Eulerian Technique

In Section 3.2, the Eulerian schemes are based on the model equations (1) and (.
conservative form, so that the velocity outside the avalanche body (inclusive of the mar
point) is notdefined. Intuitively, adding a thin layer of material over the whole computation
domain could be used to treat grain-free regions. Another trick can also be introduced
which all the physical variables are set to zert E= 0. This would be reasonable since
h=0—- m=hu=0.

Figure 12 illustrates the comparison between the computed results obtained from
NOC scheme, where a thin layles = 104, respectivelyhy = 0, is added over the whole
computational domain, and from the scheme with our front-tracking method. All the thr
results of the depth profiles are acceptable except for the oscillation near the top. Howe
a look at the velocity profiles in these figures; there are several cellsawithx < 0
around the margins. This violates the assumptiapiox > 0 in the parabolic similarity
solution problem. Moreover, the results show that there is large numerical diffusion arot
the margins (i.e., the margins move further than they should) without the front-tracki
method. For both reasons, the front-tracking method is needed to determine the locatic
the margins.

Let us discuss the origin of the oscillation near the center of the avalanche. Wt
one recomputes the solution using unlimited central differencesvfpothe oscillation
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FIG. 12. Depth (left) and velocity (right) profiles of the parabolic similarity solution computed by the NOC
scheme with Superbee limiter. In the top panels, a thin layerhyite 10-* is added to the whole computational
domain. In the middle panels, all physical variables are set to zére-if, while the bottom panels demonstrate
the results from the scheme with front-tracking method. The whole computational domain is divided into 90 ¢
(N = 90), the circles denote simulated results and the solid lines represent the exact solution. The results
that the added thin layer does not influence the depth profile very much, if it is sufficiently small, but the mar
locations cannot be exactly determined without the front-tracking method. An oscillation near the middle of
avalanche (local maximum) is visible in all three calculations.

disappears. Therefore, we have the following paradoxical situation: the introduction
TVD limiters, which are needed to stabilize the solution in the presence of discontir
ities, may destabilize the solution in smooth regions! In fact, this is not entirely surprisir
since in the presence of limiters the fluxes depend only Lipschitz-continuously on
data.

We have therefore experimented with smoother reconstructions, namely the piece
guadratic WENO interpolants of Jiang and Shu [17] and Letsl. [26], which depend
smoothly on the data and are at the same time nonoscillatory at discontinuities. In the me
cells, we still use the piecewise linear reconstructions introduced in Section 4.1, and in
two cells adjacent to the margin cells, we use a piecewise linear WENO reconstruct
We have experimented with both second- and third-order quadrature rules in time. In
experience, both yield comparable results. Figure 13 demonstrates the results for t
reconstructions combined with our front-tracking method. The margin locations are w
described by the front-tracking method, and the oscillation near the center is success
removed (compare the bottom panels in Figs. 12 and 13).

Figure 14 shows the computed front and rear edges of the avalanche body in the para
similarity solution as they evolve in timeJ" denotes the computed results obtained by
the NOC scheme with the piecewise quadratic WENO cell reconstructidmteans the
results deduced with the Superbee limiter and solid lines indicate the exact margin solut
Both the Superbee limiter and the piecewise quadratic WENO cell reconstruction for
NOC front-tracking schemes can yield good agreement of the determined margin locati
with the exact solutions.

The use of the Superbee limiter results in a small delay of the avalanche body, i.€
slower velocity at both the front and the rear. The reason is that the Superbee limiter te
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FIG. 13. Depth (left) and velocity (right) profiles of the parabolic similarity solutioh at 6 computed by the
NOC scheme with front-tracking and piecewise quadratic, WENO cell reconstruction. The whole computatio
domain is divided into 90 celldN = 90) and the Courant number is selected to be 0.3. The margin locations a
well described and the oscillation near the center is successfully removed.

to be overcompressive in smooth regions of the solution, and therefore it does not give
appropriate flux at the boundaries between the internal and the margin cells.

In order to obtain some quantitative information on the accuracy of the schemes,
introduce an error measure for the depth,

N —
E_ Z]:O th __ h(jexact1
Zj o h?xact

whereﬁ‘jex‘”ICt denotes thgth cell-averaged depth of the exact solution. The errors of th

(84)
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FIG. 14. Front and rear edges of the avalanche body in the parabolic similarity solution simulated by t
NOC front-tracking scheme as they evolve in tim@‘denotes the computed results obtained with the piecewise
guadratic WENO cell reconstructionx” means the results deduced with Superbee limiter, and solid lines indicat
the exact margin solution.
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TABLE |
Error (84) and Order of Convergence of the Different Schemes

NFT(90) NFT(180) NFT(360) Order Lag(16) Lag(32) Order

E (x107%) E (x107%)
t=1 6.429 1.023 0.150 2.77 17.130 2.937 2.54
t= 16.521 2.217 0.303 2.87 17.764 3.664 2.28
t=3 21.148 2.727 0.338 3.01 18.944 4.135 2.20
=4 23.625 2.776 0.331 3.07 18.888 4.413 2.10
=5 23.449 2.744 0.327 3.07 18.974 4.492 2.08
t=6 23.641 2.680 0.318 3.07 19.474 4.658 2.06
t=7 23.247 2.641 0.314 3.07 18.817 5.026 1.90
t=8 22.648 2.620 0.311 3.07 19.526 4.830 2.02

NOC front-tracking scheme and the Lagrangian methad=atl tot = 8 dimensionless
time units are shown in Table | together with their numerical orders of convergence. He
the Eulerian scheme is tested by usMg= 90, N = 180, andN = 360 over the interval
[0, 32] and for the Lagrangian scherhe= 16 andN = 32 are used over the interior of
the avalanche, which is a subset of [0, 32]. Since at time0 the avalanche has length
7.2, the Eulerian grid of 90 points has precisely 18 points in the interior of the avalanc
initially. Therefore, the two coarsest grids are roughly comparable for the two schemes,
soisthe error. The Lagrangian scheme is about second-order accurate, as expected. Si
ingly, however, the NOC front-tracking scheme (which is used here with unlimited cent
differences in the interior of the avalanche) converges with third-order accuracy. Thus.
the grid with 180 points, it is already more accurate than the Lagrangian scheme usin
points. We have confirmed this convergence rate for grids of 640, 1280, and 2560 points
omit the numbers. This result seems to be one of the rare occurrences of superconverg
and we do not expect it to be true for general smooth initial data. In any case, it shows
our treatment of the front margin is locally at least second-order accurate—otherwise,
global third-order accuracy of the scheme in thenorm would be destroyed.

5.3. Upward Moving Shock Wave

Shock formations are often observed when the avalanche slides into the run-out horizc
zone. Here the front part comes to rest, while the tail accelerates further and its velo
becomes supercritical. In [38] a comparison was made between our shock-capturing me
and the Lagrangian moving grid technique for the case of coinciding basal and intel
friction angles. Here we compute a flow with basal friction angle- 38° and internal
friction angles = 35°. As a consequence, we have a jump in the earth pressure coeffici
Kx when the flow changes from an expanding & 0) to a contracting regioruf < 0).

The setupis as follows: The granular material released from a parabolic cap slides dow
inclined plane and merges into the run-out horizontal zone. The centre of the cap is initi
located atk = 4.0 and the initial radius and the height are 3.2 and 1.0 dimensionless len
units, respectively. The inclination angle of the inclined plane isatd the (linear and
continuous) transition region lies betweer= 21.5 andx = 25.5. We use 180 gridpoints
and a CFL number of 0.4.

Figure 15 illustrates the simulated process as the avalanche slides on the inclined
into the horizontal run-out zone (so initially the flow is expanding). The avalanche bo
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FIG. 15. Process of the avalanche simulated by the shock-capturing and front-tracking NOC methoc
t=0,3,6,...,27 dimensionless time units. As the front reaches the run-out zone and comes to rest, part of
tail accelerates further and the avalanche body contracts. Once the velocity becomes supercritical,a shock
develops, which moves upward. The dashes below the graphs mark the tail and the head of the avalanche.

extends on the inclined plane until the front reaches the run-out zone. Here the b:
friction is enough to bring the front of the granular material to rest while the rear pe
accelerates further. Therefore, the flow becomes contracting in the transition zone. At
stage, a shock (surge) wave is createe: (12), which moves upward. Such shock waves
make the Lagrangian method unstable, if no artificial viscosity is applied (see [38]). C
nonoscillatory central front-tracking scheme handles both the shock wave and the mar
of the avalanche well.

6. CONCLUSION

In this paper we have developed a Lagrangian and an Eulerian shock-capturing fir
difference scheme with front-tracking for the spatially one-dimensional Savage—Hut
equations of granular avalanches. The purpose was to reproduce the temporal evoll
of the avalanche geometry and downslope velocity under situations when internal shc
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may occur. This happens, e.g., when an avalanche of finite mass moves from an incl
chute into the horizontal run-out zone and, in the transition zone, is deccelerated fro
supercritical flow state to a subcritical state. The Lagrangian scheme (which is excel
for smooth solutions) develops unphysical oscillations when the solution contains, or
velops, shock discontinuities. In order to compute discontinuous solutions, we propos
use a conservative shock-capturing finite difference scheme. We adapt the second-(
accurate staggered scheme of Nessyahu and Tadmor [30] to the Savage—Hutter equa
The staggered approach avoids the use of characteristic decompaositions, which are ne
in standard upwind schemes but are not known for the Savage—Hutter equations. We ¢
that our nonoscillatory central scheme reproduces both smooth and shock solutions

quately except for the following two problems: First, oscillations may occur near smoc
extrema due to the presence of piecewise linear reconstructions with TVD-type limite
These oscillations disappear when one uses piecewise quadratic cell reconstructions i
interior of the avalanche. Second, our NOC scheme (and in fact, any Eulerian sche
does not capture the vacuum boundary accurately. This may lead to serious stability p
lems. We improve the treatment of the free boundary by combining the scheme wit
front-tracking method applied to the margin cells. In the spirit of the Nessyahu—Tadn
scheme, we do not make use of the vacuum Riemann problem but rely on a new piece
linear reconstruction at the vacuum boundary and carefully chosen Taylor extrapolati
for the corresponding numerical fluxes. With such a combination of an internal Euleri
NOC scheme and a Lagrangian “boundary scheme” two standard test problems—an
ward moving shock and a parabolic cap moving down an inclined plane—could be w
reproduced (indeed, we even observed third-order accuracy for the latter problem).

scheme also produces satisfactory results for the more realistic problem mentioned at
an avalanche moving down an inclined plane and coming to rest at a flat runout. Here
upward moving shock wave develops from smooth data, and the flow changes from
panding to contracting ahead of the shock. In this situation, the earth pressure coeffic
changes discontinuously, so we are facing the full difficulties inherent in the Savage—Hu
model.

Several questions remain and await further study:

e The shock-capturing NOC numerical method including the front-tracking scher
should be extended to two-dimensional flows. This is work in progress.

e The original Lagrangian moving grid scheme could also be developed as a shc
capturing scheme. Here the main difficulty would be in the determination of the correct g
velocity.

We are working on these topics and will report on results in due time.
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